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In this paper, we reveal, for the first time, the basic nature of electron–phonon interaction in
semiconductor nanocrystals. On the basis of the experimental results on GaAs, GaP, Si
nanocrystals, and porous silicon, we further prove that the carrier-induced dynamic strain
effect (CIDSE) is a common feature in solids, which plays an extremely important role on the
electronic and optical properties of semiconductor nanocrystals. The optical transitions in
semiconductor nanocrystals are dominated by multiphonon-assisted electronic transition
processes. Nanocrystals with direct-gap and a large pressure coefficient for the band gap (as
GaAs) no longer show band-edge emission due to the intrinsic strong electron – long
wavelength anharmonic acoustic phonon coupling. Nanocrystals with an indirect-gap show
a carrier-induced dynamic Jahn–Teller effect and two fairly strong intrinsic emission bands.
Most of the open questions in the semiconductor nanocrystal field, including porous silicon,
can be consistently explained by the carrier-induced dynamic strained quantum dot model.
 1998 Kluwer Academic Publishers
1. Introduction
The electronic and optical properties of semiconduc-
tor nanocrystals have received significant attention
from both technology applications and fundamental
science in recent years. Research in the nanocrystal
field has been considerably stimulated by observation
of the strong light emission from porous silicon [1].
Since semiconductor nanocrystals fall into the quan-
tum size region, quantum confinement may play an
important role in their electronic and optical proper-
ties. When nanocrystals become smaller than the Bohr
radius of a free exciton in bulk semiconductors, their
electronic wave functions experience three-dimen-
sional quantum confinement due to the quantum dot
boundary. Quantum confinement will transform the
continuous bands of bulk semiconductors into dis-
crete levels with high oscillator strength, which shift
to higher energies with decreasing nanocrystal size
[2—5].

Numerous theoretical and experimental studies on
II—VI, IV and III—V semiconductor nanocrystals have
confirmed that the blue shift of the lowest energy
optical transition of semiconductor nanocrystals is
dominated by quantum confinement [6—8]. However,
quantitative prediction of the shift of the exciton
energy with particle size has been an outstanding
problem for a decade. In principle, the effective-mass
model should be a valid approximation for predicting
the confined energy for band edges. However, the
effective-mass model always overestimates the con-
finement energy [9]. On the other hand, experimental
results on all kinds of semiconductor nanocrystals
0022—2461 ( 1998 Kluwer Academic Publishers
(including porous silicon) show a number of common
features that are in sharp contrast to the predictions of
the quantum confinement model for a free exciton.
These anomalous optical properties observed in the
semiconductor nanocrystal field specifically include:
extremely long radiative lifetimes of photo-carriers
[10], broad absorption and emission spectra [11],
large Stokes shift [12], soft vibrational modes [13],
and much higher critical pressure for phase transitions
[14, 15], as well as enhanced luminescence from deep
level defects as crystallites are made smaller [16] and
so on. Therefore, many other models have been pro-
posed as a modification or substitution for the quan-
tum confinement model. Some of these are the core
model [17], surface model [18], core and surface
mixed model [17], phonon confinement model [19],
the polarization model [12], etc. However, every one
of them can at best quantitatively describe only some
of the above characteristics of semiconductor nano-
crystals.

Obviously, all these open questions above are con-
nected with lattice relaxation as electronic transition
occurs. In understanding the basic nature of the quan-
tum confinement system, electron—lattice interaction
in such systems becomes of utmost importance. Quan-
tum confinement naturally leads to energy confine-
ment, which means that most of the energy for excited
free carriers is confined to the tiny volume of a nano-
crystal. For this reason, semiconductor nanocrystals
have high energy density under excitation. It is
just this energy confinement for excited free carriers
that makes the optical and electronic properties of
4267



semiconductor nanocrystals show a number of the
‘‘anomalous’’ properties mentioned above. However,
all models proposed so far in the nanocrystal field
totally ignore the energy of the excited electrons and
holes themselves, and treat a nanocrystal as a rigid
cavity. The key to the importance of excited free car-
riers to the optical properties of semiconductor nano-
crystals is the fact that a single excitation in a Si
nanocrystal with diameter of 2 nm corresponds to an
increase of about 1020 eV cm~3 in the free-energy den-
sity, which will include about a 20 kbar tensile stress in
the Si nanocrystal, provided that the Si nanocrystal
has reached its excited equilibrium state. Thus, the
dynamic strain induced by excited free carriers in
semiconductor nanocrystals greatly changes the op-
tical properties predicted by the quantum confinement
model. According to the total-energy principle, an
increase of free energy in a crystal system will nat-
urally lead to an increase in lattice relaxation. The
dynamic strain induced by excited free carriers will
break the orthogonality of vibronic wave functions
between excited states and the ground state. There-
fore, the optical properties of semiconductor nano-
crystals are dominated by multiphonon-assisted
optical transition processes [13, 20, 21].

We have proposed on the basis of our previous
studies on Si and GaAs nanocrystals that the dynamic
strain induced by excited free carriers is a common
feature of all confined systems. We predicted that
indirect-gap nanocrystals, such as Si, Ge and GaP,
would be more likely to exhibit the carrier-induced
Jahn—Teller effect due to the degenerate lowest excited
levels. We have found that quantum confinement can
transform the band gap of GaAs nanocrystals from
direct to indirect as the particle size becomes smaller
than 5.0 nm [13, 20]. This has also been demonstrated
in a recent theoretical calculation [22]. When this
transformation occurs, the optical properties of GaAs
nanocrystals undergo a significant change.

In this paper we will further prove, on the basis of
experimental results on GaAs, GaP, Si nanocrystals,
and porous silicon, that CIDSE is the intrinsic
common feature in solids, which plays an extremely
important role on the electronic and optical properties
of semiconductor nanocrystals. The optical properties
of semiconductor nanocrystals are dominated by
multiphonon-assisted electronic transition processes.
Most of the open questions in semiconductor nano-
crystals, including porous silicon, can be consistently
explained by the carrier-induced strained quantum
dot model.

However, carrier-induced strain, or the lattice relax-
ation effect, presently is not an accepted mechanism in
understanding the optical properties in solids, even in
strong excitation cases. For this reason, we give
a more detailed argument about the carrier-induced
dynamic strain effects in the following section.

1.1. Carrier-induced dynamic strain effects
In the early 1960s, Keys had found that free carriers in
Si and Ge bulk materials can decrease the elastic
constants for shear strain due to an increase of free
4268
energy. The decrease of the elastic constant is propor-
tional to the cubic root of free carrier density. For
example, 0.06% arsenic impurity in Ge produces
a 5.5% decrease in C

44
[23].

In order to show the CIDSE in nanocrystals, we
begin with Huang’s classic theory for electron—lattice
interaction in solids [24, 25]. In an electron—lattice
interaction system, one-electronic total Hamiltonian,
H

5
is
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vibrational, and electron—lattice interaction Hamil-
tonians, respectively. In the adiabatic approximation,
the total wave function is approximately of vibronic
form
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(Q) is a wave function for vibrational state, n,
in the electronic level, i; and x and Q represent the
electron co-ordinate and the lattice normal co-
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the one-electron Schrödinger equation including the
electron—lattice interaction
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where both the electronic wave function and eigen-
value, E

*
(Q), are dependent on the ionic positions. The

full adiabatic vibrational Schrödinger equation for an
electron in the level i is
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where X
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(Q) are the harmonic oscillator wave func-
tions, and E5
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is the total energy, electron plus vibra-

tional E
*
(Q) is the eigenvalue of the one-electron

Schrodinger equation (3), which plays the role of addi-
tive potential in the vibrational equation. This addi-
tive potential will displace the origins for all harmonic
vibrators in electronic level i, provided that an excited
electron is in the level i. The configuration-co-ordinate
diagram (Fig. 1) for describing the electron—lattice in-
teraction is just based on this total energy equation. In
the harmonic approximation, the vibrational Hamil-
tonian can be written as
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For the sake of simplicity, in the following discussion
we assume that all vibrational models have the same
frequency, x

0
. The electronic eigenvalue, E

*
(Q), can be

expanded in terms of the normal co-ordinates to the
line term
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where E0
*
is the eigenvalue for one-electron Schrödin-

ger equation, Equation 3, with H
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"0. *
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is the

displacement of vibrational mode, Q
4
, caused by an

excited electron in energy level i. N is the total number
of harmonic vibrators in the system. Then the vibra-
tional equation becomes

GE0
*
#+

4

[1
2
(!+22/Q2

4
#x2

0
Q2

4
)#(1/N)1@2x2

0
*
*4
Q

4
]H

]X
*/

(Q)"E 5
*/

X
*/

(Q) (7)



Figure 1 The configuration co-ordinate diagram for a Si nano-
crystal, showing the total energy of the free electron, trapped elec-
tron and the free hole. º

#
, º

7
and º

5
are the energy curves for the

free electron, hole and bound electron. E1,2 and E3~6 versus
Q curves represent the split unstable excited states and energy-
relaxed band-edge states. E

0
and E@

0
are the binding energy of

a trapped electron before and after lattice relaxation. E
"
and E@

"
are

the thermal barrier of deep level º
5
before and after lattice relax-

ation. E#
4

and E
4
are the Franck—Condon energies for conduction

band and for trapped electronic state, respectively.

Introducing a new normal co-ordinate, Q
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Comparing Equations 4 and 8 we find
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represents the energy shift of the

one-electron, E0
*
, due to electron—lattice interaction.

This quantity is often referred to as the Franck—Con-
don energy of electronic state i [26]. It
is an useful conceptual aid to express the Franck—
Condon energy in terms of the number of phonons
involved in the electron—phonon coupling.
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The factor S is the electron—phonon coupling strength,
which was first introduced by Huang and Rhys [24].
Now, the optical emission line shape for the electronic
transition from excited state, i, with energy level E

*
, to

the ground state, g, with energy E
'
"0, is given by
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dipole matrix elements between electronic states i and
g. < represents the product of all harmonic vibrators.
Av represents the statistical average of phonon state
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overlap integrates of the vibrational wave functions in
electronic state g and i, and p"+
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number of phonons involved in the transition. The
term, e~S, comes from the contribution of the zero
phonon line. At high temperature this quantity be-
comes
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which shows a Gaussian distribution with a half-
width, (k

B
¹S+x

0
)1@2, centred at p"S [25, 26]. We

present here only the outline of the classic theory
about the electron—lattice interaction in solids. A more
detailed analysis can be found in 24—26.

It is obvious that when the displacements of the
harmonic vibrators induced by the excited electronic
energy cannot be ignored, the vibrational wave
functions in electronic states i and g are no longer
orthogonal. Therefore, the transition of electrons from
excited state i to ground state g will involve multi-
phonon emission processes. The emission spectrum of
the electronic transition becomes a Gaussian shape
centred on E*(Q)!S+x

0
or E*

0
!2S+x

0
. Here, 2S+x is

known as the Stokes shift between absorption and
emission frequencies.

Now we can see that the electron—lattice interaction
in solids originates from lattice strain (or lattice relax-
ation) caused by the excited electronic energy, and the
lattice strain, in turn, results in a shift of the electronic
energy level. The total energy equation, Equation 4,
shows that as long as the electronic energy is changed,
even when the perturbation that causes the electronic
transition does not act directly on the lattice, multi-
phonon emissions (or absorption) must occur, because
the vibrational states cannot avoid being displaced
[26]. We have to keep in mind that although a static
strain can change the lattice symmetry and distribu-
tion of energy states for a crystal system, the optical
transitions in a static strained crystal have to obey the
selection rule of crystal momentum conservation.
Only the dynamic strain induced by excited carriers
can relax the selection rule of crystal momentum
conservation and lead to multiphonon transition
processes.

An excited free electron in a bulk semiconductor
distributes its energy in a relatively large volume. The
involved number of vibrational modes, N, is the order
of the number of atoms in the volume of the cavity.
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By the definition of S above, the displacements of
vibrational modes in excited states are so small that
the vibrational wave functions between the ground
state and excited states will basically remain ortho-
gonal. In this case, the bulk crystal can be approxim-
ately considered as a rigid cavity under weak
excitation. Consequently, the line-shape function,
Equation 11, is only involved with the electric dipole
matrix elements of the Bloch wave functions between
two band states. Since the Bloch functions between the
different bands and wave vectors must satisfy the
orthogonal condition, under a perturbation, the elec-
tronic transition between two bands is allowed only if
the transition is performed at the same wave vector, k,
namely vertical transition. Since +k has the similar
property as classic momentum, +k is usually referred
to as crystal momentum. Thus, the electronic
transition in crystals has to simultaneously satisfy the
constraints for both energy and crystal momentum
conservation. Since the momentum of a photon is
quite small compared with the crystal momentum, the
optical transition in direct-gap crystals basically satis-
fies the selection rule of crystal momentum conserva-
tion. Therefore, the optical processes in direct-gap
crystals tend to show fairly high efficiency. In contrast,
in indirect-gap crystals, the extrema of the conduc-
tion-band and valence-band occur at different points
in k-space. In principle, if the ions are fixed on their
equilibrium lattice positions, the optical transitions
between extrema in indirect-gap crystals are forbid-
den. However, as we have discussed above, the excited
electron always create the dynamic lattice strain by
releasing their energy to the lattice. The induced strain
partially destroys the periodic potential. As a result,
the strict orthogonality of the Bloch wave functions
(or the constraint of crystal momentum conservation)
is relaxed. In principle, any lattice strain or displace-
ment can be expanded in terms of the normal co-
ordinates of vibrational modes. That is, a lattice strain
consists of a number of optical and acoustic phonons.
Thus the electron, for example, in the conduction-
band minimum, through interaction with lattice
strain, will emit or absorb some phonon that has the
momentum required for crystal momentum conserva-
tion. Then the electron performs the vertical transition
between the two bands. It is thus seen that in the
one-electron energy band model, indirect transition
can be allowed only if the crystal periodic potential
has to suffer a dynamic distortion in a relatively short
range. For this reason, as an excited electron is bound
to a deep defect, the short-range potential in such
a centre will localize the electron in a tiny volume
around the defect. That is, the partial energy of an
excited electron is confined to the small volume
around the defect. Thus, indirect transitions involving
localized deep states in some cases are in competition
with direct transition due to the strong electron—
phonon coupling (for instance, the nitrogen isoelec-
tronic traps in GaP semiconductors). Since the in-
direct transition is a second-order perturbation
process, the optical transitions in indirect-gap crystals
are usually considerably slower and much less
efficient.
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It is worth noting that the classic theory for elec-
tron—lattice interaction includes an assumption that
the crystal system has already reached its new equilib-
rium state, as an excited electron lands at an excited
state. In fact, the strength of electron—lattice interac-
tion is not a constant dominated by the electronic and
vibrational states in a system, but it mostly depends
upon the conditions of the excited equilibrium state,
which will be discussed below in more detail.

In a rigorous thermodynamic sense, the forbidden
gap, E

'
, of a semiconductor is properly defined as the

standard chemical potential, k, for an electron—hole
pair created in the thermal equilibrium state [27]. As
a chemical potential, E

'
is equal to the increase in

Gibbs’ free energy, G, upon increasing the number of
such pairs, N, by one at constant temperature and
pressure. That is, l"E

'
"(G/N)

T,P
[28, 29]. This is

the exact form of energy used in the Fermi distribution
function. From the thermodynamic relation dG"

» dP!Sd¹, it is readily seen that for a reaction in
which a change in Gibbs’ free energy is involved, the
equation above can be written as (*G/P)

T
"*» at

constant temperature. This well known equation
shows that the isothermal pressure dependence of *G
measures a volume change, *», under thermal equi-
librium conditions. We deal here with the tensile strain
case, where *G is the increase in the free energy upon
excitation. *» must be the tensile strain of the volume
for a nanocrystal, and *P represents the tensile stress
that occurs in a nanocrystal. Assuming only one elec-
tron—hole pair is created and the lifetime of excited
free carriers is long enough for the nanocrystal to
reach its excited equilibrium state, we can estimate the
volume change, *», caused by increasing E

'
in free

energy in a nanocrystal with volume »
0
. It will be

a valid approximation to use the infinitesimal ap-
proach
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where K"!(»/P)
T
/» is the compressibility

(K"1.34]10~5 and 1.02]105 Pa for bulk GaAs
and Si, respectively).

The increase in volume of a nanocrystal must lead
to an increase of the internal energy, which should be
equal to the work performed by the nanocrystal dur-
ing the tensile strain from »

0
to »@. Following the

method used by Born for calculating lattice energy
[29], the work performed by the nanocrystal is
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increase of the internal energy in the nanocrystal is
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tion 13 into this equation, we find that at the equilib-
rium condition the increase in strain energy (internal
energy) of the nanocrystal is *E"1

2
E
'
, which is inde-

pendent of volume for a closed system. This simple
relation means that in order to support one elec-
tron—hole pair to stay at its thermal equilibrium state,
the crystal requires another 1

2
E

'
energy to create the

lattice strain. The stress occurring in the nano-
crystal can be obtained by means of the well known
thermodynamic equation, *P"!(d*E/d»)

T/0
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The same equation also can be obtained in terms of
Hooke’s law [13]. Strictly, the stress occurring in
a nanocrystal is a function of the increment in the
internal energy density (or strain energy in this case).

It is thus seen from the arguments above that if
there exists a forbidden band gap, E

'
, in a semicon-

ductor with »
0
, the photon energy needed to excite

one electron from the valence-band edge to the con-
duction-band edge is about 3

2
E
'
, provided the excited

free carriers have a long enough lifetime for the lattice
to reach its excited equilibrium state (this is true for
most kinds of semiconductor nanocrystals). The
1
2
E
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energy of the photon is used to produce the lattice

strain. The lattice strain, in turn, results in an energy
relaxation for electronic levels and vibrational modes.
The energy shift of the conduction-band edge can be
expressed as *E#
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resents the pressure (or stress) coefficient for the band
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As mentioned above, this energy relaxation is, in fact,
just the Franck—Condon shift for the conduction-
band edge. If we assume that the frequencies of the
vibrational modes in excited states remain the same as
those in the ground state, then the Franck—Condon
shift is one-half of the Stokes shift. In fact, the vibra-
tional modes that occur in nanocrystals are continu-
ous modes rather than a single mode. In this case, the
band edge relaxation (or the Franck—Condon shift)
can be approximately written as E#

4
"+

/
S
/
+x

/
,

where S
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is the Huang—Rhys electron—phonon coup-
ling strength of the phonon with energy +x

/
, and the

sum is over all modes involved in the coupling [30].
It is obvious that if there exist n

1
such electron—hole

pairs at the band edges and the crystal has reached
its new equilibrium state, then the energy shift for the
conduction-band edge should be E#
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, the density of electron—hole pairs. For instance, if

a density of n"1014 cm~3 of electron—hole pairs is
created by an excitation with photon energy of 3

2
E
'
in

bulk GaAs, the carrier-induced stress and the energy
shift for the conduction-band edge are!1.3]10~2 kbar
and !0.14 meV, respectively. Thus, the carrier-in-
duced strain effect is negligible at low excitation. How-
ever, if the density of excited electron—hole pairs is
increased to n"5]1017 cm~3, the two quantities
above become !0.9 kbar and !10 meV, respective-
ly. In this case, the energy shift of the conduction-band
edge is just equal to the bonding energy of so-called
electron-hole liquid drop in bulk GaAs. Now we can
see that even in bulk crystals, the CIDSE cannot be
ignored at the strong excitation case. In fact, it has
been found in bulk crystals that the strong excitation
always produces a strong stress that expands from the
excited volume into the unexcited volume [31, 32].

As the crystallites are made smaller, the band gap
(chemical potential) of the crystallites will be increased
by quantum confinement. For the same density of the
electron—hole pairs at the excited equilibrium state,
the carrier-induced stress in nanocrystals will be much
higher than that in the corresponding bulk crystal. As
the photon energy, E

1
, is in the range E

'
(E

1
(3

2
E
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,

the condition required for the excited equilibrium
state is not achieved if only one electron—hole pair is
excited. In this case, the energy relaxation for the band
edge cannot be developed completely. Suppose there
exists a density, n, for such electron—hole pairs in
a nanocrystal at a steady excitation, then the energy of
n(1!2E

1
/3E

'
) electron—hole pairs will be used to

create the lattice strain. The corresponding stress and
the energy shift of the conduction-band edge in the
nanocrystals are about (2

3
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/dp
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/K)1@2, respectively. As the photon energy of the

excitation light is much higher than 3
2
E
'
, the conduc-

tion-band edge will undergo an over relaxation, and
the excited electrons at the conduction-band edge
need more time to release their excess energy. Thus,
the optimum emission for a nanocrystal with a band
gap, E

'
, can be achieved when the photon energy of

the excitation light is close to 3
2
E

'
. This dependence of

emission efficiency on the photon energy of the excita-
tion light has been observed in porous silicon and Si
nanocrystals [33]. Now we can conclude that the
electron—phonon coupling strength, S

/
, is not a con-

stant in nanocrystals, it depends directly on photon
energy, excitation intensity, band gap (versus size), and
pressure (or stress) rate for the band gap.

In Fig. 1 we show as an example the configuration
co-ordinate diagram of silicon nanocrystals. Follow-
ing the pioneer work on the capture cross-sections of
defect states [34, 35], we use º

7
and º

#
to represent

the total energy (electronic plus lattice) for free hole
and free electron at band edges and the º

5
versus

Q curve for deep level states. The origin of normal
co-ordinates for a nanocrystal is taken at the lattice
equilibrium position. Silicon nanocrystals have six-
fold degenerate levels at * points in the electronic
Brillouin zone (BZ). The excited electrons in the six-
fold degenerate levels will induce the uniaxial stress in
the [1 0 0] direction [23], which will split the six-fold
degenerate levels into the two up E1,2 aligned along
the stress direction (longitudinal valleys) and the four
down E3~6 perpendicular to the stress axis (transverse
valleys) [36, 37]. Their shifts, with respect to the
weight of the six levels, are

E1,2"2
3
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6
(S

11
!S
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(15)
E3~6"!1

3
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6
(S

11
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12
),

where F is the stress induced by excited free carriers,
$
6

is the shear strain deformation potential, and S
11

and S
12

are the elastic compliance constants. Accord-
ing to the Jahn—Teller theorem, only the lowest E3~6

levels are the energy relaxed stable states [30]. We
refer to this energy splitting in indirect-gap nanocrys-
tals as the carrier-induced dynamic Jahn—Teller effect.
Therefore, indirect-gap nanocrystals should exhibit
two intrinsic emission bands, as observed in porous Si
and silicon nanocrystals. One is the high energy,
fast emission band, and the other is the low energy,
slow band-edge emission band [33]. For direct-gap
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nanocrystals, E3~6 may simply represent the energy
relaxation of the singlet ! band edge.

The short-range nature of deep level states requires
that the wave function of deep level centres must
consist of contributions from the whole of k-space and
from all bands. It is then no longer possible to associ-
ate a deep level with one of the conduction band or
valence band extreme. For this reason, the deep
centres in nanocrystals should be insensitive to quan-
tum confinement. However, a number of experimental
results have shown that most of the deep centres in
semiconductor nanocrystals and porous Si do exhibit
strong light emission [16]. An efficient emission defect
centre in a semiconductor has to meet the require-
ments of both a small Stokes shift and a large capture
cross-section. The well known equation for the
thermal barrier energy of a defect centre shows that
E
"
"(E
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4
)2/4E

4
, the quantities in the equation as

shown in Fig. 1. Obviously, it is impossible for a deep
centre in bulk crystals to meet both requirements
simultaneously. However, the case in nanocrystals is
totally changed by the CIDSE. The large capture
cross-section for the deep centre with a weak elec-
tron—phonon coupling can be achieved by band-edge
relaxation. The energy relaxation of the deep level in
the band gap is dependent on the relative positions of
the defect and its neighbouring lattice atoms. If we
assume that for a contraction relaxed (*Q(0) deep
centre with its energy relaxation E

4
"E#

4
and an out-

ward relaxed (*Q'0) deep centre with its E
4
"1

2
E#

4
,

then the ratio of the thermal activation energy after
and before lattice distortion is E@

"
/E

"
"1

4
[1!

4E#
4
/(E

0
!E#

4
)]2 and [1!4E#

4
/(4E

0
! E#

4
)]2, respec-

tively [20]. Thus, strong luminescence observed from
defect centres in nanocrystals is a natural consequence
of the CIDSE. For the same reason, the band-edge
relaxation also increases the capture cross-section of
surface states, especially for those with their binding
energy close to the conduction-band edge. Therefore,
it is necessary to passivate the surface states for high
efficiency from nanocrystals.

When a cubic crystal is strained anisotropically, its
symmetry is lowered, and the crystal becomes birefrin-
gent. The [1 0 0] tensile strain resulting from excited
electrons in the X valleys will dynamically change the
crystal class from cubic to tetragonal. For tensile
strain in the [1 1 1] direction caused by the excited
electrons in the L valleys, the crystal will become
trigonal. Both the tetragonal and trigonal crystal
classes are optically uniaxial. Following the compres-
sive uniaxial stress work given by [38, 39], it is
straightforward to deduce the effects of tensile uniaxial
stress on diamond and zinc-blend semiconductors.
The ! optical modes for Si and Ge are three-fold
degenerate. For tensile stress parallel to either the
[1 0 0] or [1 1 1] directions, the k"0 optical phonons
are split into a singlet, )

4
, with its eigenvector parallel

to the stress and a doublet, )
$
, with their eigenvectors

perpendicular to the stress. For these two stress direc-
tions, the singlet and doublet become

)
4
"x

0
!*)

H
!2

3
*)

(16)
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where x
0
is the frequency of the k"0 optical modes in

the absence of strain; *)
H

represents the frequency shift
due to the hydrostatic component of a tensile stress;
and *)")

4
!)

$
"(!d*)/dF)]F is the splitting of

singlet and doublet modes under a tensile stress, F. In
general, the tensile stress F is proportional to the
strain energy n(E

1
!E

'
). It is obvious from Equation

16 that for the tensile uniaxial stress case, the singlet
mode parallel to the stress axis shifts to low energy
monotonically with increasing tensile stress, while the
shift of the doublet modes will depend on the competi-
tion of !*)

H
and 1

3
*). The intensities of the singlet

and doublet peaks are approximately in the ratio of
4 :1, estimated from the first-order selection rules [39].

For III—V zinc-blend semiconductors, the ! optical
modes are still three-fold degenerate as analyzed by
the symmetry selection rules. However, they are split
by the long-range coulomb electric field induced by
polar vibrational modes, into a singlet LO mode, with
its wave vector parallel to the field, and doublet TO
modes, with their wave vectors perpendicular to the
field. The total polarization (ionic plus electronic) in
the carrier-induced strained nanocrystals will auto-
matically lie in the strain direction due to the relative
displacements of the ions and electrons in the strain
direction. Even for non-polar crystals, the uniaxial
strain also can induce a polarization field in the strain
direction due to transfer of bond charges [40—42].
Thus, the singlet mode propagating in the strain direc-
tion is, in fact, the LO mode, and the doublet modes
are TO modes. Therefore, the TO(!) Raman peak for
III—V nanocrystals cannot be further split by carrier-
induced [0 0 1] and [1 1 1] tensile stress.

In addition, carrier-induced tensile strain will re-
markably reduce the elastic constants, especially for
those in the strain direction. Thus, almost all vibra-
tional modes in nanocrystals will show a red shift with
respect to the corresponding mode in their bulk. To
our knowledge, there are no experimental data describ-
ing the red shift of vibrational modes with tensile stress
for most semiconductors. It should be a valid approxi-
mation, in the elastic limit, to take the tensile stress rate
of a vibrational mode as the same as that measured in
the applied uniaxial stress case. Since the shear strain
induced by excited free carriers dynamically breaks
the lattice symmetry and relaxes the selection rules for
crystal momentum conservation in Raman scattering,
some vibrational modes with wave vector kO0 will
become Raman active in nanocrystals.

We can see from the arguments above that the one-
electron energy band model is no longer a valid ap-
proximation for dealing with the optical transition in
small nanocrystals, because the change in energy den-
sity caused by the electronic transition cannot be
considered as a perturbation of the original crystal
Hamiltonian. That is, the nanocrystals cannot be
treated as a rigid cavity. The electronic transition is
always accompanied by lattice relaxation due to the
high energy density of nanocrystals. For this reason,
the constraint of crystal momentum conservation on
the optical transition is greatly relaxed in nanocrystal
systems. The electronic wave functions in nanocrystals
are the vibronic wave functions (the products of



electronic wave functions and vibrational wave func-
tions), rather than the Bloch functions. Thus, the
optical transitions in both direct- and indirect-gap
nanocrystals show the multiphonon-assisted elec-
tronic transition processes in the configuration co-
ordinate diagram (Fig. 1).

2. Experimental procedure
The highest priority on research and applications for
nanocrystal materials is to produce the isolated, impu-
rity controlled and monodispersed semiconductor
nanocrystals. We have found that the powder process-
ing of semiconductor materials can lead to extremely
small nanocrystals with perfect lattice structure when
size-selective dispersion techniques are applied. The
nanocrystal samples used in this experiment were ob-
tained by the size-selective precipitation method. In
this method, ultrafine semiconductor powder is dis-
persed into ethyl alcohol to yield a suspension under
vigorous stirring. Particle separation is based on sedi-
mentation, either by gravity or by means of an ultra-
centrifuge. The final size distribution also depends on
the solvents and solution concentrations. For a dilute
particle solution in ethyl alcohol, a high monodisper-
sion ((5% r.m.s.) can be achieved for the smaller size
particle batch. The particle size was determined using
a Hitachi H300 transmission electron microscope.
A standard size deviation of about 10% was achieved
for each particle batch. The obvious advantage of the
powder processing of semiconductors is its ability to
control the impurity and lattice structure of the
nanocrystals rigorously, because the nanocrystals are
synthesized from semiconductor wafers with known
parameters.

The samples used in this study were obtained by
drying the corresponding particle solutions on stain-
less steel sheets at room temperature. A microscope
Raman system was employed for measurement of
photoluminescence (PL) and Raman scattering. The
exciting light was focused through a microscope
optical system to a spot about 50 lm in diameter on
the sample. The advantage of a microscope optical
system is easy to obtain high excitation intensity.
Photon-counting data for light analysed with a 0.85 m
double-grating spectrometer. The spectral resolution
of the measurement system is at least 0.2 meV.

The optical measurements under high pressure were
performed in a gasket diamond-anvil cell using a 4 :1
methanol : ethanol mixture or pure water as the pres-
sure-transmitting medium. In order to obtain a strong
signal for analysing, the samples with a high concen-
tration of nanocrystals in the pressure-transmitting
medium were used in this work.

3. Results and discussion
3.1. GaAs nanocrystals
The energy gaps at the !, L and X points in bulk GaAs
electronic BZ are 1.52, 1.82 and 2.0 eV, respectively.
The free exciton for the direct-gap in bulk GaAs has
an effective diameter of about 20.8 nm, which si so
large that GaAs nanocrystals are likely to show strong
Figure 2 The absorption spectra for GaAs nanocrystal sample 1
with a particle size of 10 nm, sample 2 with a size of 4.0—5.0 nm and
sample 3 with a size of 3.0 nm.

confinement effects. The quantum confinement will
rapidly open up the direct energy gap of a GaAs
nanocrystal with decreasing particle size. By using the
effective-mass model and neglecting the interaction
between the valleys, a simple estimate of the shift in
the energy gaps with particle size indicates that the
energy gap will become an indirect-gap with the X val-
leys as the lowest conduction-band edge when the
particle size is reduced below 5.0 nm. The calculations,
by means of a plane-wave pseudopotential method,
also show that as the particle size is smaller than
3.0 nm, the band gap of GaAs nanocrystals will be-
come an indirect gap with the X valley as its lowest
band edge [22].

Fig. 2 shows the absorption spectra of GaAs nano-
crystal colloids for three particle batches in which the
particle size distributions are located at 10.0$1 nm
(sample 1), 4.0—5.0 nm (sample 2) and 3.0 nm (sample
3). The absorption spectrum for sample 1 exhibits
a sharp direct-gap transition behaviour. The absorp-
tion spectra for both samples 2 and 3 show extensively
broadened indirect-gap transition behaviour. The
band gap, fitted by the relation a"A(E!E

'
)1@2 is

about 1.7 eV for sample 1. The band gap, estimated by
the relation a"B (E!E

'
)2, is about 2.2 and 2.5 eV

for samples 2 and 3, respectively.
In Fig. 3 we show the Raman spectra for the three

GaAs nanocrystal samples and the excitation behav-
iour of Raman scattering for samples 2 and 3. The
LO(!) and TO(!) modes for bulk GaAs are 292.5 and
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Figure 3 The Raman scattering spectra for GaAs nanocrystal sam-
ples 1—3. The excitation behaviour of Raman scattering for samples
2 and 3 is also shown in the figure. L1 and L2 represent the
excitation intensity at 100 and 200 W cm~2, respectively.

267.5 cm~1 (with a half-width of 3.1 cm~1), respective-
ly. The first-order Raman scattering of the large size
GaAs nanocrystals in sample 1 only exhibits the LO
and TO modes, as does the bulk GaAs. However,
compared with the Raman spectrum of bulk GaAs,
both the LO and TO peaks become broadened and
red shifted. The half-width for both LO and TO peaks
is about 20 cm~1. The red shifts for LO and TO are
2.5 and 1.5 cm~1 at normal excitation

Both absorption and Raman spectra demonstrate
that the large size GaAs nanocrystals retain direct
bandgap and ¹

$
symmetry. The excited free carriers in

the ! valley mainly produce pure dilational strain due
to the S symmetry of the electronic wave function in
the !valley [23, 26]. According to the carrier-induced
dynamic strained quantum dot model, the red shifts
for vibrational modes result from the tensile strain
caused by excited free carriers. The red shift of vibra-
tional modes should be dx/dp]*P, where dx/dp
represents the pressure rate of vibrational modes
(dx

TO,LO
/dp"0.43 cm~1kbar~1 for bulk GaAs), and

*P"!(2*E/K»)1@2, the carrier-induced stress. The
carrier-induced stress in sample 1, estimated by the
mean red shift of the LO and TO modes, is about
4.6 kbar. The stress ratio between two different size
particles under the same excitation condition can be
written as *P

1
/*P

2
"(»

2
/»

1
)1@2. If we assume that

the volume ratio for the largest particle, »
1
, and the

smallest one, »
2

in sample 1 is 0.5, which corresponds
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to a particle size range of 8.0—12 nm, then the
deviation of stress from its mean value is about
$70%, which corresponds to a stress deviation of
$3.3 kbar~1. Thus, the inhomogeneity of particle size
in the sample at most contributes 2.6 cm~1 to the
half-width of the LO and TO Raman peaks. Similarly,
broadened Raman peaks also have been observed in
C

60
fullerides, where the particle size is exactly the

same [43]. Thus, inhomogeneity of particle size in
nanocrystal samples is not important for explaining
the broadened Raman spectrum observed in semicon-
ductor nanocrystal systems, especially for the large
sized nanocrystal sample.

The electron—phonon coupling in Raman scattering
occurs in the intermediate states, which are not energy
relaxation states. In principle, the electron—phonon
coupling mechanism for Raman scattering in nano-
crystals should be the same as in their bulk. However,
any excitation on a nanocrystal unavoidably induces
lattice strain due to the feature of high energy density,
especially for the case where the photon energy is
much higher than the band gap of the nanocrystals.
Therefore, electron—phonon interactions in the inter-
mediate states for Raman scattering no longer obey
the constraint of crystal momentum conservation in
nanocrystals. At a steady excitation, the carrier-in-
duced volume change in sample 1 GaAs nanocrystals,
estimated by the mean stress occurring in the sample,
is about 0.06%. Since the large size GaAs nanocrystals
retain ¹

$
symmetry and direct bandgap, the carrier-

induced strain is pure dilational, which can only be
done by the anharmonic long-wavelength acoustical
phonons with ! symmetry, not by the ! optical
modes; because the ! optical modes cannot displace
the mass centre of unit cells and only the long-
wavelength acoustical displacements can move all
neighbouring unit cells by almost the same amount
(dilational strain). In this case, an excited electron is
not only scattered by the ! optical phonons, but also
has to emit or absorb such anharmonic acoustical
phonons simultaneously in the intermediate states of
Raman scattering. Thus, Raman scattering in large
GaAs nanocrystals, in fact, is a multiphonon scatter-
ing process involving the ! anharmonic acoustical
phonons. The mean energy for such anharmonic
acoustical phonons is about 1 m eV estimated in terms
of the half-width of the LO and TO Raman peaks.
This is just the acoustic phonon energy that an elec-
tron in a spherical symmetry valley of bulk GaAs can
absorb (or emit), namely elastic scattering [26]. For
this reason, the Raman scattering in direct-gap nano-
crystals usually is broadened by the low energy anhar-
monic mode scattering, the degree to which depends
upon the strain energy density created by excitation.

Fig. 4 depicts the PL spectra for the three GaAs
nanocrystal samples at 77 K. The GaAs nanocrystal
samples with the three different sizes are all made from
the same GaAs wafer under the same condition. How-
ever, the largest size (10 nm) GaAs nanocrystals with
direct-gap, even for those oxidized at 600 °C, do not
show any PL at either 77 K or room temperature. The
same behaviour for PL in this size range of GaAs
nanocrystals has also been observed by other groups



Figure 4 The PL spectra for GaAs nanocrystal samples 1—3 under
excitation of the 457.9 nm line at 77 K. E1 and E2,3 represent the
emission band from split higher energy states, E1, and energy-
relaxed band-edge states, E2,3.

[44]. In contrast, the smaller size GaAs nanocrystals
(without any passivation) with indirect-gap show fair-
ly strong and broad PL. From the point of view of the
CIDSE, it is not surprising for the largest size GaAs
nanocrystals with direct-gap not to show any PL. As
discussed previously, the electron—phonon coupling
mechanism for excited electrons at the conduction-
band edge is dominated by deformation potential
coupling, which depends on the pressure rate (or stress
rate) for the band gap and the strain energy density
caused by excitation. The pressure rate for the ! con-
duction-band edge of bulk GaAs is about
11 meVkbar~1. Suppose the pressure rate of the band
gap for the larger size GaAs nanocrystals remains the
same as that for bulk GaAs, then the energy shift of the
conduction-band edge for the larger size GaAs nanoc-
rystals in sample 1, obtained by the mean stress
(4.6 kbar), is about !50 meV. In order to maintain
pure dilational strain, the energy relaxation of excited
electrons at the ! band edge must be achieved by
emitting long-wavelength anharmonic acoustical
phonons, which is about 1 meV as estimated by
Raman scattering. In this case, the electron—phonon
coupling strength calculated by E#

4
"S+x is about 50

for such anharmonic acoustical phonons. Thus, the
50 meV energy relaxation for the excited electrons at
the ! band edge will take a long time due to the
cascade processes for emitting such acoustical
phonons. This dramatically increases the radiative
lifetime of the excited electrons at the ! band edge.
The intrinsic strong electron—anharmonic acoustical
phonon coupling feature for the ! band edge makes
the large size direct-gap GaAs nanocrystals unable to
show any PL. This intrinsic strong electron—anhar-
monic acoustic phonon interaction also explains the
phase shift between current and voltage observed in
large size GaAs nanocrystals [45]. For the same rea-
son, we cannot expect to observe any measurable PL
from the direct-gap InP nanocrystals [46]. However,
most II—VI nanocrystals have uniaxial symmetry with
wurtzite lattice structure. The energy relaxation of the
excited electrons at the ! conduction-band edge can
be achieved by emitting relatively high energy acoustic
phonons (from 101 cm~1 for ZnO to 43 cm~1 for CdS
[41]), which has been observed in CdS nanocrystals
[47]. In addition, the pressure rate of the direct band
gap for II—VI nanocrystals is relatively smaller com-
pared with that for III—V nanocrystals. Consequently,
the radiative lifetime for the excited electrons at the
! band edge of II—VI nanocrystals becomes relatively
shorter than that for III—V direct-gap nanocrystals.
Thus, the II—VI nanocrystals with wurtzite lattice
structure can show weaker band-edge emission
[15, 47].

In contrast to the direct-gap GaAs nanocrystals of
sample 1, the small size GaAs nanocrystals in both
samples 2 and 3 have indirect-gap with X valleys as
their lowest conduction-band edge. The splitting of
the X valleys of GaAs nanocrystals under a [1 0 0]
strain is similar to that occurring in silicon nano-
crystals, but has one longitudinal valley, E1, up and
two transverse valleys, E2,3, down (Fig. 1). The value
for the elastic compliance constant, (S

11
!S

12
), and

the shear strain deformation potential, $
6
, in bulk

GaAs are 1.54]10~12 dyn~1 cm2 and 7.4 eV, respec-
tively [26, 39]. The [1 0 0] tensile stress rate for the
band-edge states, E2,3, calculated by Equation 15, is
!3.8 m eVkbar~1, which is much smaller than the
pressure coefficient of the ! valley. In addition, the
shear uniaxial strain consists of differential displace-
ments of the neighbouring unit cells, which can only
be achieved by the short wavelength acoustical
phonons required by the symmetry. The energy relax-
ation of the excited electrons in both the L and X
valleys can be achieved by emitting such high energy
acoustical phonons at the corresponding edge of the
phonon BZ, which usually has a high density of vibra-
tional states. Compared with the ! valley, the excited
electrons in both the L and X valleys have relatively
shorter relaxation times. Therefore, the indirect-gap
GaAs nanocrystals in samples 2 and 3 are able to
show considerably strong band-edge emission at both
77 K and room temperature (Fig. 4).

The PL spectrum for GaAs nanocrystals in both
samples 2 and 3 exhibits two emission bands that
move to higher energy with decreasing particle size.
Thus, the two emission bands in the PL spectrum
must result from confined free electronic states. We
identify that the higher energy band comes from the
emission of the excited electrons at the unstable E1

level, while the lower one results from the energy-
relaxed band-edge states E2,3, as shown in Fig. 4. By
fitting the PL spectrum with Gaussian line shapes, the
PL bands E1 and E2,3 for GaAs nanocrystals in
sample 2 are located at 2.16 and 1.88 eV, respectively.
The corresponding peaks for sample 3 are at 2.37 and
2.18 eV, respectively. The [1 0 0] tensile stress occur-
ring in the GaAs nanocrystals of samples 2 and 3 is
about 25 and 16 kbar, respectively, as obtained by the
linear stress-splitting rate, $

6
(S

11
! S

12
). Therefore,

the band gap and Stokes shift for GaAs nanocrystals
in sample 2 (3) are about 2.1 (2.36 eV) and 0.187
(0.126 eV), respectively, which are roughly consistent
with those measured by the absorption spectrum.
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Figure 5 The first- and second-order Raman scattering spectrum
for sample 3 GaAs nanocrystals under excitation of the 488 nm line.

The energy of the TO(X) mode measured by neu-
tron scattering is about 252 cm~1 [48]. The same
mode measured by Raman scattering in sample
2 GaAs nanocrystals changes from 251 to 247 cm~1

with excitation intensity (Fig. 3). The IIA&
1

mode
[similar to the LA(&) mode] measured by neutron
scattering is about 198.7 cm~1 [48]. The same mode
in small GaAs nanocrystals varies from 198 to
195 cm~1 (Fig. 3). According to the CIDSE, the
Raman intensities for the vibrational modes with
kO0 should depend on the strength of the carrier-
induced dynamic strain. Thus, the Raman intensities
for the strain-sensitive modes TO(X) and IIA&

1
be-

come much stronger in sample 2 than that in sample
3 (Fig. 3). The typical red shift for TA(X), TO(!) and
LO(!) modes in sample 2 (sample 3) is 2 (1.5 cm~1),
4 (2.5 cm~1), and 7 (6 cm~1), respectively (Fig. 3).
Based on the stress obtained from the splitting of the
PL spectrum, the tensile stress rate for TA(X), TO(!)
and LO(!) is about !0.09, !0.16 and !0.28 cm~1

kbar~1, respectively. The stress rate for the TO(!)
mode measured in the applied uniaxial stress case is in
the range 0.15—0.18 cm~1kbar~1 [39].

The LO and 2LO Raman intensities for GaAs
nanocrystals in both samples 2 and 3 become much
weaker compared with those observed in GaP nanoc-
rystals (Fig. 5). The less efficiency of LO and 2LO
Raman scattering in the small sized GaAs nanocrys-
tals is perhaps caused by their band structure. Al-
though the GaAs nanocrystals in samples 2 and 3 have
X valleys as their lowest conduction-band edge, how-
ever, by the effective-mass model, the L valleys for
Samples 2 and 3 GaAs nanocrystals lie only 0.3 and
0.5 eV higher in energy than that of the X band edge,
respectively. In this case, the excited electrons may
scatter between the L and X valleys. The electrons in
the L valleys will induce the [1 1 1] dynamic strain
[23]. Since the L valleys are not energy stable states,
the small dynamic strain induced by the excited elec-
trons in the L valleys will add a perturbation on the
major [1 0 0] strain. As a result, the polarization field
coupling with the LO mode will be decreased in the
major [1 0 0] strain direction. Perhaps, this is the
4276
reason that small sized GaAs nanocrystals show less
efficiency for both LO and 2LO Raman scattering.

Since the red shift of vibrational modes depends on
the tensile stress, which is proportional to the strain
energy, n(E

1
!E

'
), here n is the density of excited

electron—hole pairs, if photon energy and excitation
intensity are kept constant, then the vibrational modes
of the GaAs nanocrystals in sample 3 should show
a relatively smaller red shift than that in sample 2 due
to the large band gap of GaAs nanocrystals in sample
3. This is exactly the Raman behaviour we have ob-
served in the small sized GaAs nanocrystals, as shown
in Fig. 3. In Fig. 3 we also show the dependence of
vibrational modes of GaAs nanocrystals in samples
2 and 3 on excitation intensity. When the excitation
intensity is increased from level 1 (100 Wcm~2, by the
488 nm line) to level (200 W cm~2), the red shifts of the
LO, TO, TO(X), and IIA&

1
vibrational modes of

GaAs nanocrystals in Sample 2 are 4.5, 2, 3 and
2 cm~1, respectively. However, the same vibrational
modes in the GaAs nanocrystals of sample 3 all show
a small red shift of less than 1 cm~1 at the same
excitation condition. In fact, it is a natural conse-
quence of the CIDSE that at the same excitation
condition, the vibrational modes in smaller size par-
ticles show relatively smaller red shifts and broaden-
ing than that in larger sized particles. A more detailed
discussion about this feature will be given in the sec-
tion on silicon nanocrystals and porous silicon.

3.2. GaP nanocrystals
In Fig. 6a, b we show the first- and second-order
Raman spectra for bulk GaP and GaP nanocrystals
with a mean size of 4.0 nm. The Raman peaks were
identified in the figures in terms of phonon energy and
symmetry. Peak B (34.7 meV), which occurred in both
bulk GaP and nanocrystals was identified in lecture to
be electronic Raman scattering by the neutral accep-
tor Mg, dissolved in the Ga sites in GaP [49].
Compared with Raman scattering in bulk GaP, all
vibrational modes in GaP nanocrystals become soft,
and the degree to which depends on excitation inten-
sity. The typical red shifts of the TA(X), TO(!) and
LO(!) modes in GaP nanocrystals with respect to
those in bulk GaP are 1, 1.5 and 5 cm~1, at normal
excitation by 457.9 nm line (Fig. 6a). Another remark-
able feature of the Raman scattering in GaP nanocrys-
tals is that the Raman intensity of the LO(!) and
2LO(!) peaks becomes much stronger than that in the
corresponding bulk GaP. The enhanced Raman inten-
sity of the LO(!) and 2LO(!) peaks doe not reflect
that Fröelich coupling [the interaction of an excited
electron with the long-range electric field induced by
the LO(!) mode] is increased in GaP nanocrystal. As
discussed above, the excited electrons in the X valleys
will produce a shear strain in the [1 0 0] direction by
emitting high energy acoustical phonons. The shear
strain must lead to relative displacements of metallic
(Ga) ions with respect to the non-metallic ions (P) in
the strain direction. These internal displacements will
create a polarization field, which will enhance the
long-range electric field induced by the LO mode.



Figure 6 (a) and (b) show the first- and second-order Raman scat-
tering spectra for GaP nanocrystals with a size of 4.0 nm and bulk
GaP. Compared with bulk GaP, the intensity ratio for the TO
(2TO) and LO (2LO) Raman peaks becomes reversed in GaP
nanocrystals.

Thus, the enhanced Raman intensity for LO(!) and
2LO(!) observed in the GaP nanocrystal may result
from piezoelectric coupling caused by the carrier-in-
duced uniaxial strain [50].

In order to further prove the piezoelectric effect
caused by excited free carriers in indirect-gap GaP
nanocrystals, Raman scattering for bulk GaP and
nanocrystals with a size of 4.0 nm was performed
under hydrostatic pressure. Fig. 7a, b depicts the typi-
cal Raman spectra for GaP nanocrystals and the cor-
responding bulk GaP at several pressures. The Raman
intensity of the TO modes in bulk GaP remains higher
than that of the LO mode over the entire measured
pressure range (1 bar to 60 kbar), and the relative
intensity of the TO and LO mode basically remains
the same. A similar result has been observed by others
[51]. The pressure rate of the TO and LO modes for
bulk GaP is 0.45 and 0.43 cm~1kbar~1, respectively.
However, the Raman intensity of the LO mode in
GaP nanocrystals becomes much higher than that of
the TO modes at atmospheric pressure. With increas-
ing pressure, the Raman intensity of the LO and 2LO
Raman peaks rapidly decreases, and, at about 60 kbar,
the intensity ratio of the TO and LO Raman peaks in
GaP nanocrystals reaches the same as that in bulk
GaP, while the pressure rate for the LO and TO
Figure 7 (a) and (b) depict the pressure behaviour of the TO and LO
Raman intensity in bulk and GaP nanocrystals, respectively.

modes in GaP nanocrystals becomes 0.45 and
0.43 cm~1kbar~1, respectively. In addition, the half-
width of the LO and TO Raman peaks decreases and
first-order Raman scattering for all vibrational modes
with kO0 disappears with increasing pressure.

According to the definition of piezoelectric polar-
ization, the electron—LO phonon coupling strength,
through the polarization generated by the piezoelec-
tric effect, is proportional to shear strain [50]. Since
an applied pressure can effectively constrain the shear
strain induced by excited free carriers, thus the polar-
ization field induced by the shear strain decreases with
increasing pressure. Consequently, the Raman inten-
sity of the LO phonon in GaP nanocrystals shows
a relatively fast decrease compared with that in bulk
GaP. When the applied pressure is strong enough to
constrain the tensile strain caused by excitation, first-
order Raman scattering for the vibrational modes
with kO0 becomes forbidden, because Raman scat-
tering in a rigid nanocrystal must obey the selection
rule of crystal momentum conservation.

Fig. 8 shows the PL spectra of GaP nanocrystals at
several pressures. The PL spectrum of GaP nanocrys-
tals with size of 4.0 nm exhibits three peaks. By fitting
the PL spectrum with Gaussian line shapes, the peaks
are located at 2.45, 2.23 and 1.85 eV. According to
their energy and pressure behaviour, we attribute the
two higher energy peaks to emission from the splitting
levels, E1 and E2,3, respectively, and the lowest one to
emission from defect states, E

$
. The corresponding

defect emission band in bulk GaP was also shown in
Fig. 8. It is clearly seen from Fig. 8 that, at first, the E1

peak moves to lowest energy with increasing pressure
at a rate of about !3$0.5 meVkbar~1, while the
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Figure 8 The PL spectra of GaP nanocrystals at several pressures.
E1 and E2,3 represent emission bands resulting from splitting E1

and E2,3 band states, E
$

depicts the emission band from defect
states. The corresponding defect emission band in bulk GaP is also
shown in the figure.

band-edge emission peak, E2,3, moves to higher en-
ergy at a rate of 5.4$0.2 meVkbar~1 (Fig. 9). When
the pressure is over 27 kbar, the PL intensities from
both confined electronic states and defect states be-
come ten times lower than that at atmospheric pres-
sure. At the high pressure range, a sharp structure,
which may result from surface states, occurs at the
energy of the band-edge emission as shown in Fig. 8.
The energy of this new peak basically does not change
with pressure. For this reason, the pressure rate of the
band-edge emission for this nanocrystal sample can-
not be measured at the higher pressure range. The
lowest emission band, E

$
, resulting from unknown

deep levels is also independent of pressure in the
pressure range measured in this work (Fig. 9).

The pressure dependence of the PL and Raman
scattering of GaP nanocrystals provides an important
test of CIDSE. As discussed previously, the carrier-
induced strain in the [1 0 0] direction will split the
three-fold degenerate X valleys of a GaP nanocrystal
into one up, with a stress rate 2

3
(S

11
!S

12
)$

6
, and the

two down, with a stress rate !1
3
(S

11
!S

12
)$

6
.

The strain compliance constant, (S
11
!S

12
), and the

deformation potential constant, $
6
, are 1.25]

10~12 dyn~1 cm2 and 6.2 eV for bulk GaP, respective-
ly [26, 39]. Since the applied hydrostatic pressure can
effectively constrain the strain induced by excited free
carriers, it can be seen from Fig. 1 that at the low
pressure range, the emission peak, E2,3, from the band
edge should move to higher energy with a pressure
rate 2]2

3
(S

11
!S

12
)$

6
, and the higher energy peak,

E1, should shift to lower energy with a pressure rate
!1

3
(S

11
!S

12
)$

6
, because the energy relaxation of
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Figure 9 The pressure dependence of the emission bands E1, E2,3

and E
$

measured in GaP nanocrystals with a size of 4.0 nm under
excitation of a 457.9 nm line.

the valence band decreases with a pressure rate
!1

3
(S

11
!S

12
)$

6
. The pressure rates calculated by

using this equation and the constants above are about
!2.8 and 5.2 meVkbar~1, which are in good agree-
ment with the experimental results. From the cross-
over pressure (27 kbar given by Fig. 9), we find that
the Stokes shift is about 0.14 V and the band gap for
GaP nanocrystals of 4.0 nm in size is about 2.37 eV,
which is a little smaller than that predicted by the
effective-mass model. When the applied pressure is
over 27 kbar, the band-edge relaxation induced by
excitation is completely constrained by the applied
pressure. As this happens, the PL intensities from both
band-edge emission and defect emission become much
weaker for indirect-gap GaP nanocrystals. The optical
transition in GaP nanocrystals changes from a multi-
phonon-assisted electronic transition to one control-
led by crystal momentum conservation. In this case,
the nanocrystals with indirect-gap will return back to
being a poor band-edge emission material, as is their
bulk crystal.

The pressure dependence of the capture cross-sec-
tion for a deep centre directly relies on the pressure
dependence of the barrier energy, E

"
. Because applied

pressure reduces the lattice constant and constraints
the energy relaxation for both band edge and deep
centres, it is obviously seen from Fig. 1 that the barrier
energy for a deep centre in direct-gap nanocrystals will
monotonically increase with increasing pressure. In
general, the emission intensity from deep centres de-
creases with increasing pressure, as observed in bulk
GaAs and CdS nanocrystals [15, 35]. Compared with
direct-gap nanocrystals, the capture cross-section for
most deep centres in indirect-gap nanocrystals will
reduce slowly, as is the case observed in GaP nano-
crystals, since the down shift of the conduction-band
edge caused by pressure may decrease E

"
. The pres-

sure results of the PL from confined electronic states
and defect states in GaP nanocrystals further prove



Figure 10 The PL spectra for the larger (10 nm) and smaller (3 nm)
size Si nanocrystals at the excitation intensity of levels 4 and 3,
respectively. E1,2 and E3~6 show the emission bands resulting from
split high lying E1,2 levels and band-edge states E3~6, respectively.
The peak of the E3~6 emission band for 10 nm Si nanocrystals is
located at 0.8 eV.

the consistency and validity of the carrier-induced
dynamic strained quantum dot model.

3.3. Silicon nanocrystals and porous silicon
As discussed in Section 1.1, excited electrons at the
conduction-band edge of a silicon nanocrystal will
induce [1 0 0] direction strain, which, in turn, splits the
six-fold degenerate valleys into two up (transverse)
and four down (longitudinal). In the meantime, the
three-fold optical modes are split into a low energy
singlet LO mode, with it’s wave vector parallel to the
strain direction and high energy doublet TO modes,
with their wave vectors perpendicular to the strain
direction. Compared to GaAs and GaP, silicon has
a relatively narrow band gap and weak confined effect
(with a Bohr radii of 4.3 nm). As shown previously, the
photon energy required to excite one electron—hole
pair at an equilibrium state should be 3

2
E
'
, and

1
2

E
'

energy of the photon is to be used to produce
lattice strain. In order to show the carrier-induced
strain effect, strong excitation experiments under the
488 nm line from an Ar` laser were performed on
different size silicon nanocrystals. The excitation
intensity was varied from 500 to 2000 Wcm~2 in
increments of 500 Wcm~2 (from levels 1—4) and the
illuminated area was maintained the same as the exci-
tation intensity was changed.

In Figs 10 and 11a we show the excitation behav-
iour of PL and Raman scattering for large size
(10$1 nm) silicon nanocrystals. The confined energy
for this size Si particles is about 0.1 eV, as estimated by
the effective-mass model. As the excitation intensity
increases, the Raman spectrum for the three-fold de-
generate optical modes broadens and splits into
a lower energy, LO, mode and higher energy doublet,
TO, modes. For large size particles, the doublet TO
modes basically retain the same energy as that of the
! optical modes measured at low excitation. In prin-
ciple, the doublet TO modes should have a red shift,
because any uniaxial strain always have a pure dila-
tional component, which will move the weight centre
Figure 11 (a) and (b) show the excitation behaviour of the ! optical
modes in larger and smaller size Si nanocrystals, respectively. The
Raman spectrum for a p` porous Si under excitation level 1 is also
shown in (a). The Raman spectrum for the same smaller size Si
nanocrystals under excitation of the 457.9 nm at excitation level 3 is
given in (b).

of ! optical modes to lower energy (Equation 16).
However, a pure shear strain involving a uniaxial
stretch along the [1 0 0] major axis must be accom-
panied by a symmetrical compressive strain perpen-
dicular to the stretch direction, which will enhance the
energy of the doublet TO modes. The Raman inten-
sities of the LO and TO modes observed in large
silicon nanocrystals are approximately in the ratio of
4 :1, which is in good agreement with the result ex-
pected from the selection rules for first-order Raman
scattering [39]. The sharp LO and TO modes split by
excitation further demonstrate that in a carrier-in-
duced optical uniaxial system, the splitting LO mode
automatically lies on the strain axis and is indepen-
dent of the direction of light passing through the
nanocrystals [41, 52]. All these facts consistently sup-
port the identification of the splitting modes occurring
in Si nanocrystals. The experimental datum for such
splitting under an applied stress along the [0 0 1] and
[1 1 1] directions in bulk Si is about 0.15 and
0.23 cm~1kbar~1, respectively [38]. However, the
experimental datum for the compressive case was
obtained for incident light perpendicular to the stress.
In order to be consistent with stress splitting of the
band-edge states of Si nanocrystals, we take the stress
rate for LO—TO splittings as 0.2 cm~1kbar~1 in the
tensile strain case.

The Si nanocrystals, with a size around 10 nm, do
not show any PL at excitation level 1. As the excita-
tion intensity increases, the Raman spectrum for !
optical modes becomes red shift and broadening,
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which reflects that carrier-induced dynamic strain in
the nanocrystals is enhanced with increasing excita-
tion intensity. Consequently, the constraint of crystal
momentum conservation for optical transition in the
bulk is relaxed and the optical transitions in the dy-
namic strained Si nanocrystals become a multi-
phonon-assisted electronic transition process. At
excitation level 4, the LO—TO splitting observed on
the Raman spectrum is 22 cm~1, which corresponds
to a 110 kbar stress occurring in the excited nanocrys-
tals. At the same excitation, the strong PL spectrum of
the same Si nanocrystals shows a sharp peak at
1.75 eV and another strong and broad emission band
at 0.8 eV as measured by a PbS detector. By using
a Gaussian line-shape to fit the PL spectrum, the
higher energy emission band is located at 1.8 eV with
a half-width of about 0.3 eV. Linear splitting of levels
E1,2 and E3~6 under a tensile uniaxial stress, F, follows
E1,2!E3~6"F]$](S

1
!S

2
), where the shear de-

formation potential constant, $
6
, is 9.2 eV, and the

elastic compliance constant, (S
11
!S

12
), is

0.982]10~12 dyn cm2 for bulk silicon [26, 39]. Thus,
the splitting of E1,2 and E3~6 at excitation level
4 should be 0.99 eV. This splitting, measured by the
PL spectrum, is 0.95 eV, which is basically consistent
with the value estimated by the linear splitting, above.

As the silicon nanocrystals are made smaller, the
two splitting peaks, E1,2 and E3~6, move into the
measurement region, as shown by the PL of silicon
nanocrystals with a size of 3.0 nm in Fig. 10. The
higher energy E1,2 peak and low energy E3~6 peak,
obtained in terms of the Gaussian-line shape fitting
technique, are located at 2.3 and 2.0 eV, respectively.
Two similar emission bands of Si nanocrystals have
been observed by others [53]. The Raman spectrum
for the same Si nanocrystals is shown in Fig. 12 at the
same excitation intensity. The stress occurring in the
nanocrystals is about 35 kbar, as measured by split-
ting of the LO and TO modes. The splitting of E1,2

and E3~6 levels, calculated by the linear splitting, is
0.315 eV, which is in good agreement with the value
measured by the PL spectrum. From the carrier-in-
duced stress, F, and taking into account the energy
relaxation of the valence band edge, the Stokes shift
should be 2

3
F]$](S

11
!S

12
), (see Fig. 1). Thus, in

the absence of strain, the weight centre for the six-fold-
degenerate conduction band is located at about
2.18 eV, which is close to the value predicted by the
effective-mass model [5].

When the particle size distribution in the sample is
relatively broad, the structure-splitting spectrum will
not be so sharp, as shown in Fig. 10. Fig. 13 depicts
the excitation behaviour of the PL spectrum for the
silicon nanocrystals with a size of 4.0—5.0 nm. The
corresponding Raman spectrum is similar to that ob-
served for 3.0 nm Si nanocrystals, except for a little
broadening (Fig. 12). As excitation intensity increases,
the half-width of the PL spectrum is increased due to
the enhanced splitting of levels E1,2 and E3~6 caused
by excitation. At the same time, the weight centre
of the PL moves to higher energy due to increase
of the electron population in the higher splitting
level, E1,2.
4280
Figure 12 The size dependence of the Raman spectra of silicon
nanocrystals under the excitation intensity of level 3. The red shift
and broadening of the Raman spectra for the ! optical modes
increase with increasing particle size.

Figure 13 The excitation behaviour of the PL spectra for Si nano-
crystals with a size of 4.0—5.0 nm at excitation intensity levels 2 and
3 under the 488 nm line. E1,2 and E3~6 represent the emission bands
resulting from the split high lying unstable E1,2 levels and the
band-edge, E3~6, respectively.



Figure 14 The excitation behaviour of the PL spectra for the Si
nanocrystals with a size in 2.5 nm and a p` porous Si sample under
different excitation intensities (from levels 1 to 3).

In Figs 11b and Fig. 14 we show the excitation
behaviour of the Raman and PL spectra for small
silicon nanocrystals with a size of 2.5 nm. In Fig. 14 we
also show the excitation behavior for a p` porous
silicon sample. At excitation level 1, the Raman
spectrum for the ! optical modes shows a peak at
520 cm~1, while the weak PL spectrum has a peak at
around 2.15 eV. With increasing excitation intensity,
the Raman peak shows a relatively smaller red shift
and broadening compared with that in the large size
particles at the same excitation intensity. Simulta-
neously, the PL spectrum is rapidly enhanced and
broadened. The excitation behaviour of the PL for
smaller Si nanocrystals also shows that there still
exists constraint of crystal momentum conservation
for optical transitions even in small size indirect-
gap nanocrystals. The strong luminescence can be
achieved only when the dynamic strain induced by
excited carriers is strong enough to relax the selection
rule of crystal momentum conservation. That is,
strong light emission in indirect-gap nanocrystals
must be accompanied by broadening and red shift of
the Raman spectra.

However, when the excitation light was changed
from the 488 nm line to the 4579 nm line, the excita-
tion behaviour of Raman scattering for smaller Si
nanocrystals becomes quite similar to that observed in
the larger particles, as shown in Fig. 11b. The reason is
clear. As discussed in the section for GaAs nano-
crystals, the red shift and broadening of the Raman
peak directly depends on carrier-induced strain, which
is dominated by the increase in strain energy of
a nanocrystal. The strain energy induced by excitation
is proportional to n (E

1
!E

'
), where n is the density of

excited electron—hole pairs in a nanocrystal and E
1

is
the photon energy. Since the energy gap, E

'
, for

nanocrystals is rapidly increased by quantum confine-
ment, thus at the same excitation condition, the strain
energy density occurring in a nanocrystal will decrease
with decreasing particle size. Fig. 12 depicts typical
Raman spectra of Si nanocrystals for several size
ranges at the same excitation condition. We can
clearly see that the red shift and broadening of Raman
spectra increase with increasing particle size (in the
nanometre size range).

The Raman scattering results obtained on GaAs,
GaP and Si nanocrystals are naturally consistent with
the carrier-induced dynamic strained quantum dot
model. We can conclude that the red shift and
broadening of vibrational modes in nanocrystals are
dominated by the strain energy density caused by
excited free carriers, not by phonon confinement. The
experimental results obtained in this work are in sharp
contrast to the prediction of the phonon confinement
model. In addition, the phonon confinement model
cannot explain why the acoustical modes and the
optical modes at the edge of the photon BZ all exhibit
a red shift, and why the red shift changes with photon
energy and excitation intensity in nanocrystal systems.
The experimental evidence for the phonon confine-
ment model originated from the red shift and
broadening of the ! Raman peak observed from large
size Si crystallites in glasses and amorphous silicon
[19, 54]. Then the phonon confinement concept was
settled on the basis of phonon uncertainty. From the
dependence of the red shift of ! Raman modes upon
nanocrystal size and excitation intensity obtained in
this work, it is clear that the experimental foundation
for the photon confinement model is not solid. In
addition, all the physical concepts have to be consis-
tent with the entire structure of physics. The basic
nature of the phonon is mechanical vibration of a lat-
tice at its equilibrium position. Does phonon uncer-
tainty have so strong an effect on the energy of the
! optical mode, which remains its mass centre static?
Thus, the nature of phonon confinement may need to
be reconsidered in principle.

A question which we have to address is the temper-
ature effect associated with the excitation. Under an
excitation, the strain energy occurring in a nanocrystal
is proportional to n (E

1
!E

'
). Suppose the density, n,

of the excited electron—hole pair is 1021 cm~3, and
(E

1
!E

'
) is 1 eV. Then the stress occurring in a Si

nanocrystal, calculated from Equation 14, is about
56 kbar, which will induce a down shift of 11.2 cm~1

for the LO(!) mode. We further assume that all strain
energy is transferred into thermal energy. For this
example, the increase of lattice temperature in the Si
nanocrystal is about 97 K, calculated by n(E

1
!E

'
)/c

1
,

where c
1
is the heat capacity at constant pressure (c

1
is

1.65 JK~1 cm~3 for Si). According to the temperature
dependence of the ! optical modes measured for cry-
stalline Si [55], the red shift of the ! optical modes
caused by the increase in temperature is, at most,
1.8 cm~1, which is much smaller compared with the
corresponding red shift induced by carrier-induced
stress. In addition, the strong excitation is somehow
similar to laser annealing, which can eliminate the
uniaxial strain induced by excited free carriers. Fig. 15
depicts the excitation behaviour of the ! optical
modes in 15—20 nm Si nanocrystals. When the excita-
tion intensity is higher than level 4, instead of a red
shift, the Raman peak of the ! optical modes moves
back to higher energy. This fact further shows that
below excitation level 5, the red shift and broadening
of the Raman spectra of vibrational modes are
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Figure 15 The excitation behaviour of the optical modes for the
large Si nanocrystals with a size of 15—20 nm. As the excitation
intensity is higher than level 4, the Raman peak, instead of being red
shifted, moves back to higher energy due to the laser annealing
effect.

dominated by carrier-induced strain effects. When the
excitation intensity returns to level 1 after high excita-
tion, the Raman spectra for both small and large Si
nanocrystals essentially remain the same as before.
Thus, carrier-induced strain is elastic, even when the
uniaxial stress is more than 110 kbar.

Compared to the excitation behaviour of small Si
nanocrystals (Fig. 14), the p` porous silicon sample
shows a smaller red shift and less broadening as exci-
tation intensity varies from level 1 to 4. The Raman
spectrum for the same porous silicon sample shows
a splitting of about 25 cm~1 between the LO and TO
modes at excitation level 1. The corresponding stress
occurring in the sample is about 125 kbar, similar to
that observed in larger sized Si particles (Fig. 11a). The
splitting of E1,2 nd E3~6 at this stress is 1.13 eV, as
obtained by linear splitting. Thus, the PL observed
from the porous silicon sample, in fact, results from
the lowest four-fold degenerate E3~6 levels, which
have an energy relaxation of about 0.38 eV, as ob-
tained by Equation 15. Taking into account the en-
ergy relaxation occurring in the valence band, the
band gap for this porous silicon sample is about
2.5 eV, which is quite close to that of silicon nanocrys-
tals with a size of 2.5 nm. (Fig. 14). We can see from
Fig. 11b that Raman broadening induced by the same
excitation condition is only about 5 cm~1 in this size
silicon nanocrystals. Thus, there exists at least
20 cm~1 (corresponding to 100 kbar uniaxial stress)
splitting between the LO and TO modes resulting
from the static uniaxial strain residing in the silicon
particles of porous silicon. The static strain resident in
porous silicon has been observed by a number of
groups in terms of X-ray diffraction technique [56].
The tensile strain occurring in porous silicon was
found to increase with formation current density and
intensity of illumination [57].
4282
However, there has been no acceptable model of the
formation mechanism of porous silicon that can ex-
plain why the anodic dissolution process of crystalline
Si forced by an electric current can induce such a large
residual strain in nanometre Si particles. On the basis
of the carrier-induced strain model, we have proposed
that when the current density for the anodic etching
process is fixed, the carrier-density passing through
the tip of a pore is greatly increased as the porosity of
the etched layer increases. When the tip of a pore
comes into the nanometre range, the stress occurring
in a narrow tip is close to 2

3
(nE

'
/K)1@2. Suppose E

'
in

the nanometre sized tip is 1.5—2.0 eV, due to quantum
confinement, and the carrier density is about
1020—1021 cm~3. The stress in the narrow tip could
reach from several tens to hundreds of kilobars. Under
the large strain occurring in a narrow tip, the anodic
process will grow a SiH

9
compound on the tip surface,

which, in turn, fixes a strain on the lattice of the tips by
lattice mismatch between the silicon and the surface
layer. When the stress in the tip is strong enough to
crack the tip, then the anodic dissolution process stops
and the passivated and uniaxial strained nanometre
size Si particles are left in the etched layer [21]. Thus,
porous Si usually exhibits optic uniaxial properties, as
has been observed by other groups [33].

Unlike silicon nanocrystals, the energy levels E1,2

and E3~6 in porous silicon are separated by a static
residual strain, which varies with anodic conditions.
Therefore, it is quite reasonable to identify that the
blue-fast emission band observed in porous silicon
results from energy unstable E1,2 states, while the
red-slow emission band comes from the energy-re-
laxed band-edge states, E3~6 [58].

The pressure behaviour of the PL and Raman scat-
tering for the porous silicon sample can further ident-
ify that the optical properties of porous silicon are
dominated by strained silicon quantum dots. The pre-
cipitation for the porous silicon samples was reported
in [21]. Here we need to point out some attention to
the optical measurement under hydrostatic pressure.
Because the optical properties of nanocrystal systems
are dominated by the carrier-induced strain effect, it
becomes critically important to maintain a constant
excitation intensity while the pressure is being
changed. Otherwise, the experimental data under
pressure have no strictly physical meaning. In addi-
tion, the weak Raman signal of porous silicon cannot
be measured by the normal back scattering geometry
used in high-pressure Raman scattering. We used
a diamond-anvil cell with a 45° incident light path,
and the resulting Raman signal was collected by
a microscopic objective at right angles to the sample
surface. Compared to the back scattering system, the
present system has higher collection efficiency and
a higher signal-to-noise ratio [15].

Fig. 16 shows the PL spectra of p` porous silicon at
several pressures. The PL peak energies at 1 bar for
p` porous Si is 1.74 eV. In Fig. 17 we show the
pressure dependence of the PL peak energy of both p`

and p~ porous Si samples. For the p` (p~) sample, the
PL peak energy shifts to higher energy with increasing
pressure at the rate of 6.2 (6.5) meVkbar~1 up to



Figure 16 The PL spectra of a p` porous Si under several pressures.

Figure 17 The pressure dependence of the PL peaks for p` (d) and
p~ (m) porous Si.

a pressure of 26 (17) kbar. At the higher pressure
range, the peak energy decreases with pressure at the
rate of !4.1 and !2.8 meVkbar~1 for the p~ and p`

samples, respectively. A similar pressure rate, in the
range !2.6 to !3.3 meVkbar~1, was reported by
others [59]. The strong pressure dependence of the PL
peak of porous silicon shows that the emission mecha-
nism of porous Si cannot be attributed to surface
states or to any kind of deep defect states in porous Si,
because the localized nature of deep defect states dic-
tates that the binding energy of the defect states is
insensitive to the applied pressure, as observed in GaP
Figure 18 The Raman spectra for p` porous silicon at several
pressures. The Raman spectrum is fitted with LO and TO peaks.
The pressure behaviour of the Raman spectra show that the applied
pressure only has a little effect on the residual strain in the Si
particles of porous Si.

nanocrystals. There is no natural explanation for the
pressure dependence of the PL in porous Si as any-
thing other than a band-edge emission. In addition,
the same results have been obtained using ethyl al-
cohol and pure water as the pressure-transmitting
medium. This fact reflects that there was no chemical
reaction between the transmitting medium and porous
silicon.

Fig. 18 depicts Raman spectra of a p` porous sili-
con sample at several pressures. The TO and LO are
red shifted from the normal triplet at k"0 by 5 and
30 cm~1, respectively. The pressure coefficient of the
LO and TO peaks are 0.75$0.5 and 0.60$
0.5 cm~1 kbar~1, respectively. The pressure coefficient
of the triplet modes from bulk Si is 0.52 cm~1kbar~1.
From the Raman spectra of porous silicon under
hydrostatic pressure, we can see that hydrostatic pres-
sure has only a small effect on the residual strain in the
porous silicon sample, although the applied pressure
can constrain the strain induced by excitation. When
the pressure is higher than 55 kbar, splitting of the LO
and TO Raman peaks shows that there still exists
more than 100 kbar uniaxial stress in the silicon par-
ticles of porous silicon. Clearly, the PL observed from
porous silicon results from the lower energy level,
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E3~6. The pressure coefficient of the PL peaks for
both samples should be close to 2

3
$
6
(S

11
!S

12
)"

6.2 meVkbar~1, which is in good agreement with the
experimental results. The Stokes shift and band gap
obtained from the cross-over pressure and pressure
rate of the PL peaks are about 0.16 (0.11) and 1.9
(1.97 eV) for strained p` (p~) porous Si, respectively.
As the hydrostatic pressure is high enough to con-
strain the energy relaxation of the band edges (the
cross-over pressure) completely, the band gap will
decrease with a pressure rate of about
!1.5 meVkbr~1 in bulk Si, provided that the six-fold
degenerate conduction bands are not splitting, as is
the case for GaP nanocrystals. However, there exists
a fixed large [1 0 0] direction strain between the E1,2

and E3~6 states in the strained silicon particles of
porous silicon, as shown by the Raman spectra under
pressure (Fig. 18). When the applied hydrostatic pres-
sure is higher than the cross-over pressure, interaction
between the E1,2 and E3~6 states through the residual
uniaxial strain will repel the lower energy level,
E3~6, down at a rate close to !1

3
$
6
(S

11
!S

12
)"

!3.0 meVkbar~1, which is basically consistent
with the pressure rates obtained in this work and
others [59].

In summary, we can conclude that the optical prop-
erties of porous silicon, in fact, result from strained
silicon quantum dots. Both the formation mechanism
and optical properties of porous silicon are naturally
consistent with the CIDSE.

4. Conclusions
On the basis of experimental results on GaAs, GaP
and Si nanocrystals, and porous silicon, we conclude
that carrier-induced dynamic strain, or the lattice re-
laxation effect, is an intrinsic feature in solids, which
plays an extremely important role in the electronic
and optical properties of semiconductor nanocrystals.
The dynamic strain induced by excited free carriers
breaks the orthogonality of vibronic wave functions
between excited states and the ground state, and,
hence, relaxes the selection rule of crystal momentum
conservation for optical transitions in a rigid
nanocrystal. Therefore, the optical properties of semi-
conductor nanocrystals are dominated by multi-
phonon-assisted electronic transitions.

The electron—phonon coupling mechanism for ex-
cited electrons at the conduction-band edge of a
nanocrystal is dominated by deformation potential
coupling through carrier-induced strain. The band-
edge relaxation (or electron—phonon coupling strength)
in a nanocrystal directly depends upon the pressure
(or stress) rate of the band gap and the strain energy
density produced by excitation. The direct-gap nanoc-
rystals, which have high symmetry and large pressure
coefficients for the band gap, such as GaAs nanocrys-
tals, no longer show band-edge emission due to strong
electron—long wavelength anharmonic acoustic
phonon coupling. The band gap of GaAs nanocrystals
will transfer from direct into indirect, with the X val-
leys as the lowest conduction-band edge, when the
GaAs particle size is smaller than 5.0 nm.
4284
The excited electrons at the degenerate valleys of an
indirect-gap nanocrystal will induce a uniaxial strain,
which, in turn, splits the degenerate levels into two
groups, one group aligned along the strain (longitudi-
nal) shifts to higher density, the other, perpendicular
to the strain axis (transverse), is down shifted and
becomes the lowest conduction-band edge. As a result,
indirect-gap nanocrystals usually show two intrinsic
emission bands; one of them results from higher en-
ergy unstable states, the other comes from energy-
relaxed band edge states. The excited electrons at the
indirect-band edge can couple with high energy acous-
tic and optical phonons at the corresponding edge of
the phonon BZ. Compared with the direct-gap nanoc-
rystals, indirect-gap nanocrystals usually exhibit fairly
strong and broadened band-edge emission due to the
shorter relaxation time of the excited electrons at the
indirect-band edge. However, when carrier-induced
strain is completely constrained by applied pressure,
the optical transition in nanocrystals has to meet the
selection rule of crystal momentum conservation. In
this case, indirect-gap nanocrystals change back to
poor emission materials, as in their bulk. The optical
properties of porous Si are similar to those observed in
Si nanocrystals. The light emission observed in porous
Si, in fact, results from splitting lower energy E3~6

levels caused by the residual strain.
The large capture cross-section for a weak coupling

deep centre can be achieved by band-edge relaxation
of a nanocrystal. Consequently, deep centres in
semiconductor nanocrystals usually show strong light
emission, especially for nanocrystals with an indirect-
gap or a direct-gap with a small pressure coefficient
for the band gap, since the excited electrons at the
conduction-band edge in these kinds of nanocrystals
have relatively shorter relaxation times.

All vibrational modes in nanocrystals become soft
compared with those in their corresponding bulk crys-
tals, the degree to which depends on the strength of
the carrier-induced strain. The selection rule of crystal
momentum conservation for Raman scattering is re-
laxed by carrier-induced strain effects. Thus, first-order
Raman scattering for some vibrational modes with
kO0 can become Raman active. The three-fold de-
generate ! optical modes in Si nanocrystals are split
by carrier-induced [1 0 0] shear strain into a lower
energy LO mode, with its eigenvector parallel to the
strain direction, and higher energy doublet TO modes,
with their eigenvectors perpendicular to the stress
axis. It is worthwhile noting that since the conduction-
band edge for nanocrystal systems is energy relaxed,
the electron—phonon coupling strength measured
by the PL spectrum is no longer the same as
that measured by Raman scattering in nanocrystal
systems.
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